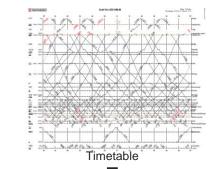
# Automatic Train Operation How hard can it be?


Justus Stern, SJ AB, Rolling Stock Division, Centre of Expertise



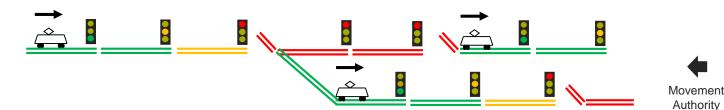
KTH Seminar 2020-10-01

# **Traffic management**

- The infrastructure is a production plant
  - Operated according to the timetable
  - A train path is created in front of a train and is removed behind the train
  - A train may only move if the track is confirmed free from obstacles and a movement authority is given
  - The traffic control centre issues movement authority






**Traffic Control Centre** 



Interlocking

Authority

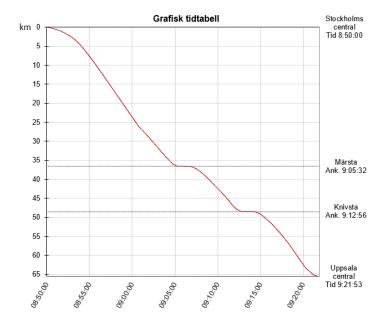




# **Deregulated railway**

### Before

- Vertical integration
  - One body responsible for tracks and services
- After deregulation
  - "The road organisation model"
    - Open access to the track
    - Legal and organisational separation between infrastructure and operators
  - Split responsibilities for the services
    - Traffic management the infrastructure holder
    - Train operation and passengers/freight the operator






### **Operation - the operator's part**

#### Commitment to the customer

- The operator sells the ticket and is responsible
- Running the train
  - Follow the planned train path on time





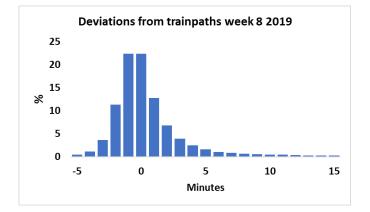
### The driver's tasks

#### Running the train

- Make sure the train is functional and ready for departure
- Read conditions from train order, signals and line description
- Receive movement authority
- Visually verify that the track is free from obstacles
- Accelerate and follow the timetable
- Handing over the train after mission completed

### Monitoring

Monitoring potential disruptions, surrounding traffic, technical systems,etc


### Handling disruptions

- Being point of contact with the traffic control centre
- Dialog with internal operations centre
- Informing passengers
- Solving upcoming issues



### **Disruptions are common**

- Physically large and open network
  - Obstacles on the track
  - Surrounding traffic
  - Technical failures in infrastructure or on vehicles



- Avsyning av spåren
- Bromsproblem
- Felaktig ställverksmanöver
- Fordonsskada
- Godståg fastnade i backe
- Godståg med befarad hjulskada
- Hjulskada
- Kontaktledningsfel
- Misstänkt påkörning
- Misstänkt väska på Resecentra
- Neddriven kontaktledning
- Obehöriga i spåret
- Oljeläckage

- Olycka
- Otillåten stoppsignalspassage
- Polisingripande
- Signalfel
- Siktfart pga obehöriga i spårområde
- Snödrev
- Snöskred
- Spårbeläggning som kom och gick
- Spårfel
- Spårmarkeringar
- Trafikstopp begärt av polis
- Växelfel
- Återstart av fordonssystemet



KTH Seminar 2020-10-01

### **Driverless metros – an established solution**

#### Characteristics

- One control centre handling traffic management and passengers
- Enclosed system
  - Organisationally no open access
  - Physically enclosed (tunnels and fenced track)
  - National legislation (SFS 1990:1157)
- Operation
  - All trains have similar properties
  - Running from A to B is a solved issue



Driverless Metro in Copenhage (photo: Metroselskabet/Peter Sørensen)



### Handling disruptions in metro systems

- Enclosed few disruptions
- A disruption stops the whole line
  - Trains are removed from the schedule
  - No booked passengers to handle
- Help is not far away
  - Time between trains 1,5 15 minutes
  - Distances between stations approximately 1 km





### Automation in metro systems

- UITP (International Association of Public Transport)
  - Defines grade of automation
  - Adapted for metro systems
- Driverless Metro started 1987
  - Docklands Light Rail in London
  - More than 100 systems in operation worldwide

| Grade of<br>Automation | Type of operation     | Train speed<br>control | Train<br>stopping | Door control       | Handling<br>disruptions |
|------------------------|-----------------------|------------------------|-------------------|--------------------|-------------------------|
| GoA0                   | On-sight by<br>driver | Driver                 | Driver            | Driver             | Driver                  |
| GoA1                   | ATP with<br>driver    | Driver                 | Driver            | Driver             | Driver                  |
| GoA2                   | Semi-<br>automatic    | Automatic              | Automatic         | Driver             | Driver                  |
| GoA3                   | Driverless            | Automatic              | Automatic         | Train<br>attendant | Train<br>attendant      |
| GoA4                   | Unattended            | Automatic              | Automatic         | Automatic          | Automatic               |

Grades of Automatic Train Operation UITP 2011



## **Automation of railway**

| Grade of<br>Automation | Type of operation     | Train speed<br>control | Train<br>stopping | Door control       | Handling<br>disruptions | Visualy<br>monitoring<br>track | Monitoring<br>technical<br>systems | U U | Prevent<br>interuptions | Inform to<br>passengers | U | Communic.<br>onboard -<br>TMC | Communic.<br>with staff | Recieving/<br>handing<br>over train |   |
|------------------------|-----------------------|------------------------|-------------------|--------------------|-------------------------|--------------------------------|------------------------------------|-----|-------------------------|-------------------------|---|-------------------------------|-------------------------|-------------------------------------|---|
| GoA0                   | On-sight by<br>driver | Driver                 | Driver            | Driver             | Driver                  |                                |                                    |     |                         |                         |   |                               |                         |                                     |   |
| GoA1                   | ATP with<br>driver    | Driver                 | Driver            | Driver             | Driver                  |                                |                                    |     |                         |                         |   |                               |                         |                                     |   |
| GoA2                   | Semi-<br>automatic    | Automatic              | Automatic         | Driver             | Driver                  |                                |                                    |     |                         |                         |   |                               |                         |                                     |   |
| GoA3                   | Driverless            | Automatic              | Automatic         | Train<br>attendant | Train<br>attendant      | ?                              | ?                                  | ?   | ?                       | ?                       | ? | ?                             | ?                       | ?                                   | ? |
| GoA4                   | Unattended            | Automatic              | Automatic         | Automatic          | Automatic               | ?                              | ?                                  | ?   | ?                       | ?                       | ? | ?                             | ?                       | ?                                   | ? |

• Many more functions to be automated than metro



### Automatic train operation – a common issue

- Stakeholders on an open railway
  - Responsibilities and interfaces?
- What is the process?
  - How to start and end a driverless train?
  - Which information is needed and communicated?
  - How are disruptions managed?
- How to guarantee delivery to the customer?
- Adaption of legislation and traffic rules?
  - Drivers are at present integrated in the EU directives, TSI's and national legislation
- Benefits and costs?



Foto: SVT Tekniskt Magasin, Erik Bergsten



# Thank you for your attention!



KTH Seminar 2020-10-01