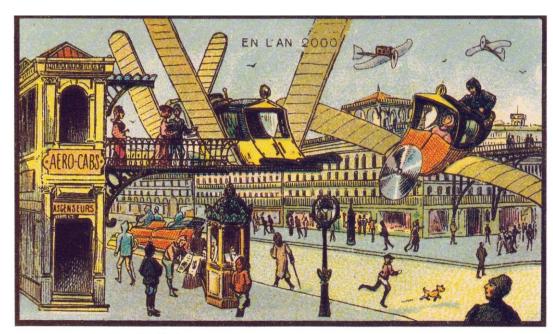


Future Traction Systems - from Vision to Reality

Creating Sustainable Value at Sustainable Cost


KTH Railway Group Seminar
Ganesh Chandramouli
Product Manager, Coordinator External R&D collaboration
Rolling Stock Equipment Division, Energy and Motion
Bombardier Transportation Sweden
May 22, 2019

"Of how the future will unfold, the past floats in blissful ignorance"

- Christina, Queen of Sweden (1632 – 1654), written ca 1682

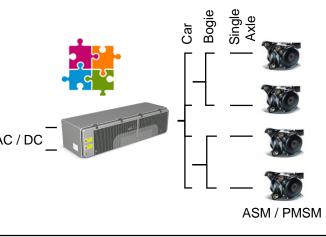
"Rail travel at high speed is not possible, because passengers, unable to breathe, would die of asphyxia."

- Dr. Dionysius Lardner, professor of Natural Philosophy and Astronomy, 1823

Post card image depicting the world in 2000 created by J Villemard for the 1900 Paris World Exhibition

- Source Wikimedia Commons

Recent Railway Propulsion breakthroughs at BOMBARDIER


MITRAC 3 LAUNCHED – Propulsion solutions for the next decade

MITRAC 3 TC 1500

Future Performance Captured

Modular Flexibility

Customer Value Achieved

R&D – in partnership

SiC Converter in Stockholm MOVIA Metro 2018

- **34%** propulsion losses
- **22%** size
- 51% weight
- 19 dB noise

GreenSiCtrac Demo

Battery power in TALENT EMU 2018

100 km range, 7-8 min recharge

Is there a need for new Propulsion Technologies?

MEGATREND perspectives

Extrapolated Mega Trends

Population Growth

Urbanization

Digitization & Connectivity

Climate Change

Railway Impact

Higher Capacity

Higher Availability

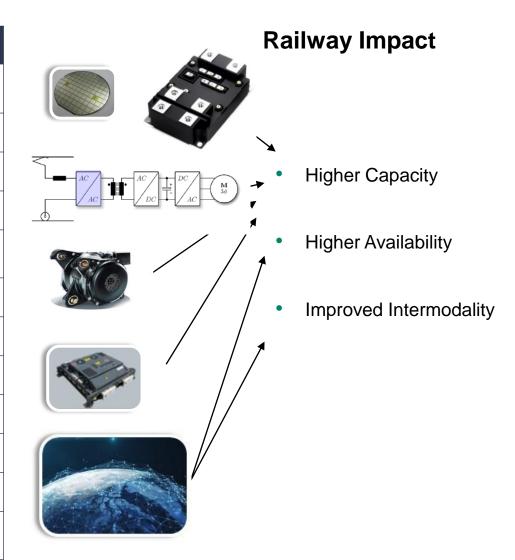
Improved Intermodality

Propulsion Design Parameters

Performance

Integration

Availability


Infrastructure

Maintenance


Propulsion Technology Evolution

Possibilities and Impact

	Categories	Possible Alternatives and Evolution paths	
Semiconductors	Devices	Si	SiC MOSFETS - Planar, Trench SiC Bipolar, IGBT
	Package	Industrial	Traction
Converter Design	Topology	Multilevel	Medium Frequency
	Cooling	Forced (Air/Water)	Car Motion
Motors	Magnetization	Induction	PM Synchronous, Assisted Synchronous Reluctance
	Electrical	3-phase	6-phase
	Mechanical/Thermal	Lightweight	
Energy storage	Battery	Li-lon	Flow
	Fuel cell	Hydrogen	
Digitization	Communication	Dedicated networks	5G
	Data management	Assisted Learning	Machine Learning / AI
	Virtualization	Model Based Design and Test	

Trade-offs in Powertrain Innovation

What would drive the choice of Technologies?

Dealing with Uncertainty – Evaluating Outcomes?

Extrapolated Mega Trends

Population Growth

Urbanization

Digitization & Connectivity

Climate Change

- Higher Availability

Higher Capacity

Improved Intermodality

Uncertain Trend Scenarios

Globalization

Scenario I

- Low First Cost
- Medium TCO
- Standardized Products
- Global Manufacturing
- Global Standard Service

Commoditization

Scenario IV

- Low First Cost
- High TCO
- Modular Products
- Multi-Local Manufacture
- Local Service

Scenario II

- Medium First Cost
- Low TCO
- Modular Products
- Global Manufacturing
- Mobility as a Service

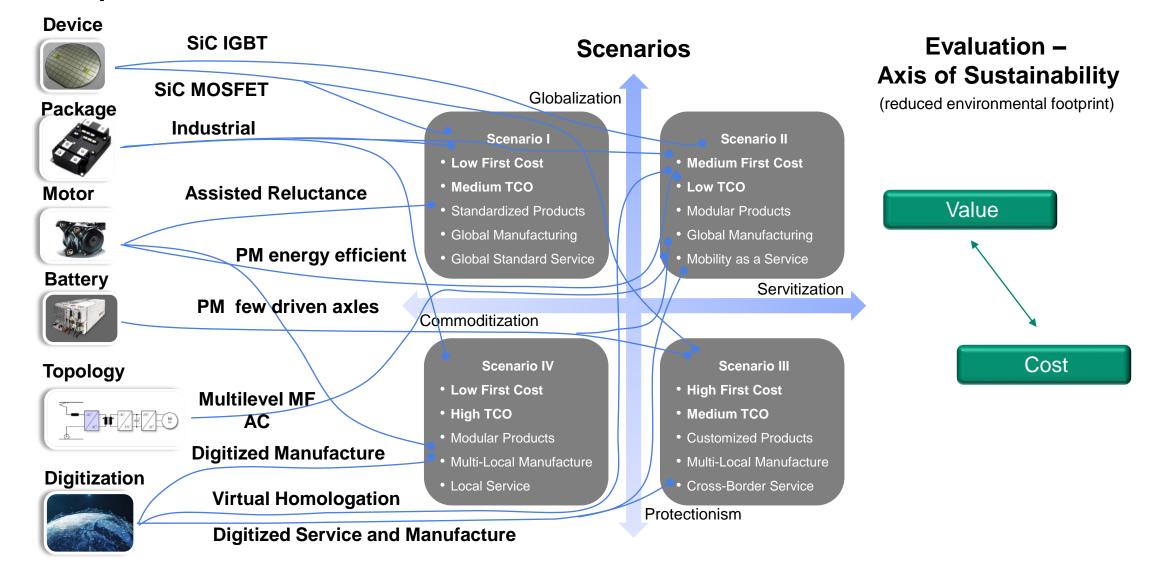
Servitization

Scenario III

- High First Cost
- Medium TCO
- Customized Products
- Multi-Local Manufacture
- Cross-Border Service

Protectionism

Evaluation – Axis of Sustainability


(reduced environmental footprint)

Cost

Technology Applications?

Scenario examples – choices still abound

Choosing Sustainable Value at Sustainable Cost

What do we want to achieve together and how soon?

Areas of Influence

Business Models

Buying models considering Energy Cost and Emissions?

Data sharing, ownership and security models?

Standards

Service Life << 30 years?

Noise emission levels?

Virtual Homologation?

Combined **Techologies** SiC + Digitized optimization → Less PM /Battery Cost → High SiC volumes → Less SiC Cost

Inter-Industrial Collaboration

Road e-mobility + Rail + Telecom

Intermmodality & Railway supersystem Rolling Stock Owner + Operator + OEM + Infrastructure Owner

Scenarios

Globalization

Scenario I

- Low First Cost
- Medium TCO
- Standardized Products
- Global Manufacturing
- Global Standard Service

Scenario II

- Medium First Cost
- Low TCO
- Modular Products
- Global Manufacturing
- Mobility as a Service

Servitization

Scenario III

- High First Cost
- Medium TCO
- Customized Products
- Multi-Local Manufacture
- Cross-Border Service

Protectionism

Influence Outcomes -**Axis of Sustainability**

(reduced environmental footprint)

Cost

Commoditization

Scenario IV

- Low First Cost
- High TCO
- Modular Products
- Multi-Local Manufacture
- Local Service

If our end goal is sustainability at an attractive cost we can influence this outcome in most scenarios by innovative Business Models, Standards and Collaboration. Technology innovation will follow.

COST of WATERSHIP

Questions & answers

Thank you very much!

KTH Railway Group Seminar
Ganesh Chandramouli
Product Manager, Coordinator External R&D collaboration
Rolling Stock Equipment Division, Energy and Motion
Bombardier Transportation Sweden
May 22, 2019